ERYthromycin ethylsuccinate (Oral)
Newborn use only

Alert
Risk of infantile hypertrophic pyloric stenosis is significantly higher in neonates treated with erythromycin.μ

Indication
1. Pertussis – post-exposure prophylaxis and treatment (azithromycin is recommended).
2. Chlamydial conjunctivitis and pneumonia
3. Treatment of other susceptible bacterial infections in penicillin-allergic infants
4. Prokinetic agent for gastrointestinal dysmotility (routine use not recommended)

Action
Inhibits protein synthesis by attaching to the 50S subunit of the bacterial ribosome in susceptible organisms.
Motilin receptor agonist.

Drug Type
Macrolide antibiotic.

Trade Name
E-Mycin Syrup, EES Granules

Presentation
200 mg/5 mL suspension (granules for reconstitution), 100 mL
400 mg/5 mL suspension (granules for reconstitution), 100 mL

Dosage / Interval
Pertussis – post-exposure prophylaxis and treatment* (azithromycin is recommended. Use erythromycin only if azithromycin is not available).
10 mg/kg/dose PO 6-hourly for 5 to 14 days; 14 days preferred to avoid risk of relapse.

Chlamydia infection (conjunctivitis, pneumonia)
12.5 mg/kg/dose PO 6-hourly for 14 days.2

Non-chlamydial, susceptible bacterial infection in penicillin-allergic infants3
Weight <1 kg:
- Postnatal age ≤14 days: 10 mg/kg/dose 12-hourly
- Postnatal age >14 days: 10 mg/kg/dose 8-hourly

Weight ≥1 kg:
- Postnatal age ≤7 days: 10 mg/kg/dose 12-hourly
- Postnatal age >7 days: 10 mg/kg/dose 8-hourly

Prokinetic dose for gastrointestinal dysmotility (inconsistent evidence for its efficacy and safety and routine use not recommended)
Low-dose regimens: 2.5 mg/kg/dose 6-hourly up to 10 days.10 or 5 mg/kg/dose 8-hourly (7–14 days)11
High dose regimens: Doses up to 10–12.5 mg/kg/dose 6-hourly for 7–14 days have been used.12–14
Post-op intestinal atresia: 3 mg/kg/dose 6-hourly19

Route
Oral

Preparation/Dilution
Add 77 mL of sterile water to granules in small volumes and shake vigorously until no lumps are visible. Suspension expires 10 days after reconstitution. Write expiry date on bottle.

Administration
Oral, preferably with feeds.15
For prokinetic effect, often administered 30 minutes prior to feed.

Monitoring
Liver function.

Contraindications
Hypersensitivity to erythromycin or any component of the product.
Concomitant therapy with pimozide, cisapride, ergotamine or dihydroergotamine, terfenadine, astemizole, lovastatin or simvastatin.

Precautions
Use with caution in hepatic impairment.
QT interval prolongation.
Uncorrected hypokalaemia, hypomagnesemia.
Class 1A and Class 3 antiarrhythmic agents.

Drug Interactions
QT interval prolonging drugs: Cisapride, fluconazole, octreotide, cotrimoxazole, verapamil, Class 1A and Class 3 antiarrhythmic agents.
Drugs that may increase toxicity of erythromycin: Ketoconazole.
Drugs that may reduce erythromycin plasma concentration: Carbamazepine, theophylline.
Erythromycin may increase plasma concentrations of following drugs: Carbamazepine, digoxin,
<table>
<thead>
<tr>
<th>Evidence summary</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertussis – post-exposure prophylaxis and treatment 1,4</td>
<td></td>
</tr>
<tr>
<td>Systematic review of eradicating B. pertussis from the nasopharynx found short-term antibiotics (azithromycin for 3–5 days, or clarithromycin or erythromycin for 7 days) were as effective as long-term (erythromycin for 10 to 14 days) (risk ratio (RR) 1.01; 95% CI 0.98 to 1.04), but had fewer side effects (RR 0.66; 95% CI 0.52 to 0.83). 4</td>
<td></td>
</tr>
<tr>
<td>The Centers for Disease Control and Prevention recommends oral azithromycin 10 mg/kg/day daily for 5 days. Azithromycin has the advantage of once daily dosing and shorter duration of therapy. 1</td>
<td></td>
</tr>
<tr>
<td>Erythromycin may be used if azithromycin is unavailable: 40 mg/kg per day in 4 divided doses for 14 days. 1</td>
<td></td>
</tr>
<tr>
<td>Chlamydia prophylaxis in infants born to mothers who have chlamydial infection 2</td>
<td></td>
</tr>
<tr>
<td>Infants born to mothers who have untreated chlamydia are at high risk for infection. However, prophylactic antibiotic treatment is not indicated and the efficacy of such treatment is unknown. Infants should be monitored to ensure appropriate diagnosis and treatment if symptoms develop.</td>
<td></td>
</tr>
<tr>
<td>Treatment of chlamydial conjunctivitis and pneumonia 2</td>
<td></td>
</tr>
<tr>
<td>C. trachomatis infection in neonates is most frequently recognised by conjunctivitis that develops 5 to 12 days after birth. C. trachomatis also can cause a subacute, afebrile pneumonia with onset at ages 1 to 3 months. RCTs reported chlamydial conjunctivitis or pneumonia is eradicated after systemic treatment with oral erythromycin 50 mg/kg/day for 14 days with few treatment failures and is more effective than topical treatment for chlamydia conjunctivitis. 5–8</td>
<td></td>
</tr>
<tr>
<td>Recommendation: The Centers for Disease Control and Prevention recommends oral erythromycin 50 mg/kg per day given orally in four divided doses for 14 days for either chlamydial conjunctivitis or pneumonia. Alternative regimen is azithromycin 20 mg/kg/day, once daily for 3 days. Topical antibiotic therapy alone is inadequate and is unnecessary when systemic treatment is administered. 2</td>
<td></td>
</tr>
<tr>
<td>Prokinetic agent in preterm infants</td>
<td></td>
</tr>
<tr>
<td>Systematic review evaluated the efficacy of erythromycin for prophylaxis or treatment of feeding intolerance in preterm infants. Ng and Shah 2008 9 reviewed 10 randomised, controlled studies using both high- and low-dose erythromycin. Meta-analysis on most outcomes couldn’t be done. Erythromycin for prevention or treatment demonstrated no consistent effect on time required to achieve full feeds. Three studies using erythromycin at doses between 40 and 50 mg/kg/day</td>
<td></td>
</tr>
</tbody>
</table>
reported a statistically significant effect on feeding tolerance as did one study using erythromycin at a slightly smaller dose (but still considered high dose) of 15 mg/kg/day. A single study (Oei 2001) using low-dose erythromycin (10 mg/kg/day) for prevention of feed intolerance reported showed that infants in the erythromycin group achieved full feeds significantly earlier than the placebo group. However, three other studies that used low-dose erythromycin failed to show any significant difference between erythromycin and placebo in the times to establish full feeds in preterm infants <32 weeks’ gestation with feeding intolerance. There was no reported effect on other neonatal morbidities including necrotising enterocolitis or sepsis. Conclusion: Although some studies have reported a reduced time to full feeds, the effect is inconsistent, the optimal dose is unclear and there has been no reported consistent effect on other neonatal morbidities. Prokinetic agent in surgical infants

An RCT comparing erythromycin 3 mg/kg/dose 4 times daily compared with placebo after primary repair of uncomplicated gastroschisis in 62 infants reported no difference in time to achieve full enteral feeding (27.2 v 28.7 days; P = .75), catheter-related sepsis, duration of parenteral nutrition or time to discharge between the 2 groups. An RCT comparing erythromycin 3 mg/kg/dose 4 times daily in 30 neonates undergoing primary anastomosis for congenital small bowel atresia reported neonates receiving oral erythromycin achieved full enteral feeding earlier (13.07 vs. 16.13 days), required PN for a shorter duration (10.53 vs. 13.73 days) and their hospital stay was less (16.2 vs. 18.0 days). Conclusion: There is inconsistent evidence that erythromycin 3 mg/kg/dose 4 times daily may have a beneficial effect in newborn infants with abdominal surgical conditions restricted to infants undergoing repair of small intestinal atresia. (LOE II GOR D)

Safety

A systematic review of observational data reported an increase in the absolute risk of developing infantile hypertrophic pyloric stenosis (IHPS) following erythromycin exposure of 0.4 % (95% CI 0.3–0.5%) in those receiving erythromycin at any time, and 2.6% (95% CI 1.5–4.2%) in those receiving erythromycin in the first 14 days. Bioavailability

The absorption was lower in infants <1 month of age than in older children. Administration of the drug with feeds considerably increased the absorption of erythromycin ethylsuccinate.

References